Sparse multinomial kernel discriminant analysis (sMKDA)

نویسندگان

  • Robert F. Harrison
  • Kitsuchart Pasupa
چکیده

Dimensionality reduction via canonical variate analysis (CVA) is important for pattern recognition and has been extended variously to permit more flexibility, e.g. by “kernelizing” the formulation. This can lead to over-fitting, usually ameliorated by regularization. Here, a method for sparse, multinomial kernel discriminant analysis (sMKDA) is proposed, using a sparse basis to control complexity. It is based on the connection between CVA and least-squares, and uses forward selection via orthogonal least-squares to approximate a basis, generalizing a similar approach for binomial problems. Classification can be performed directly via minimum Mahalanobis distance in the canonical variates. sMKDA achieves state-of-the-art performance in terms of accuracy and sparseness on 11 benchmark datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Kernel Learning for Image Set Classification

No single universal image set representation can efficiently encode all types of image set variations. In the absence of expensive validation data, automatically ranking representations with respect to performance is a challenging task. We propose a sparse kernel learning algorithm for automatic selection and integration of the most discriminative subset of kernels derived from different image ...

متن کامل

Non-Sparse Multiple Kernel Fisher Discriminant Analysis

Sparsity-inducing multiple kernel Fisher discriminant analysis (MK-FDA) has been studied in the literature. Building on recent advances in non-sparse multiple kernel learning (MKL), we propose a non-sparse version of MK-FDA, which imposes a general lp norm regularisation on the kernel weights. We formulate the associated optimisation problem as a semi-infinite program (SIP), and adapt an iterat...

متن کامل

Sparse support vector machines by kernel discriminant analysis

We discuss sparse support vector machines (SVMs) by selecting the linearly independent data in the empirical feature space. First we select training data that maximally separate two classes in the empirical feature space. As a selection criterion we use linear discriminant analysis in the empirical feature space and select training data by forward selection. Then the SVM is trained in the empir...

متن کامل

Matching Pursuit Kernel Fisher Discriminant Analysis

We derive a novel sparse version of Kernel Fisher Discriminant Analysis (KFDA) using an approach based on Matching Pursuit (MP). We call this algorithm Matching Pursuit Kernel Fisher Discriminant Analysis (MPKFDA). We provide generalisation error bounds analogous to those constructed for the Robust Minimax algorithm together with a sample compression bounding technique. We present experimental ...

متن کامل

Sparse Representation Based Complete Kernel Marginal Fisher Analysis Framework for Computational Art Painting Categorization

www.PosterPresentations.com • This paper presents a sparse representation based complete kernel marginal Fisher analysis (SCMFA) framework for categorizing fine art images. • First, we introduce several Fisher vector based features for feature extraction so as to extract and encode important discriminatory information of the painting image. • Second, we propose a complete marginal Fisher analys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2009